Effect of three different insect larvae on growth performance and antioxidant activity of thigh, breast, and liver tissues of chickens reared under mild heat stress

Author:

Stelios VasilopoulosORCID,Ilias GiannenasORCID,Ioannis PanitsidisORCID,Christos AthanassiouORCID,Elias PapadopoulosORCID,Paschalis FortomarisORCID

Abstract

AbstractThis study investigated the potential of insect-based diets to mitigate heat stress impact on broiler chickens, focusing on growth performance and antioxidant stability. Four dietary groups were examined, including a control and three treated groups with Tenebrio molitor (TM), Hermetia illucens (HI), and Zophobas morio (ZM) larvae, respectively, at a 5% replacement ratio. Temperature and relative humidity of the poultry house were monitored. Under heat stress conditions, the HI-fed group consistently exhibited the highest body weight, demonstrating their remarkable growth-promoting potential. TM-fed broilers also displayed commendable growth compared to the control. Insect larvae inclusion in the diet improved feed intake during early growth stages, indicating their positive influence on nutrient utilization. Regarding antioxidant stability, malondialdehyde (MDA) levels in the liver, an oxidative stress and lipid peroxidation marker, were significantly lower in the TM-fed group, suggesting reduced oxidative stress. While the specific insect-based diet did not significantly affect MDA levels in thigh and breast tissues, variations in the total phenolic content (TPC) were observed across tissues, with HI larvae significantly increasing it in the breast. However, the total antioxidant capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels did not differ significantly among dietary groups in the examined tissues. Results suggest that insect-based diets enhance broiler growth and potentially reduce oxidative stress, particularly in the liver. Dietary presence of bioactive compounds may contribute to these benefits. Further research is required to fully elucidate the mechanisms underlying these findings. Insect-based diets seem to offer promise as feed additives in addressing the multifaceted challenges of oxidative stress and enhancing broiler health and resilience under heat stress conditions.

Funder

Greece and European Regional Development Fund

Aristotle University of Thessaloniki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3