Modeling end-to-end delays in TSCH wireless sensor networks using queuing theory and combinatorics

Author:

Shudrenko Yevhenii,Timm-Giel Andreas

Abstract

AbstractWireless communication offers significant advantages in terms of flexibility, coverage and maintenance compared to wired solutions and is being actively deployed in the industry. IEEE 802.15.4 standardizes the Physical and the Medium Access Control (MAC) layer for Low Power and Lossy Networks (LLNs) and features Timeslotted Channel Hopping (TSCH) for reliable, low-latency communication with scheduling capabilities. Multiple scheduling schemes were proposed to address Quality of Service (QoS) in challenging scenarios. However, most of them are evaluated through simulations and experiments, which are often time-consuming and may be difficult to reproduce. Analytical modeling of TSCH performance is lacking, as only one-hop communication with simplified traffic patterns is considered in state-of-the-art. This work proposes a new framework based on queuing theory and combinatorics to evaluate end-to-end delays in multihop TSCH networks of arbitrary topology, traffic and link conditions. The framework is validated in simulations using OMNeT++ and shows below 6% root-mean-square error (RMSE), providing quick and reliable latency estimation tool to support decision-making and enable formalized comparison of existing scheduling solutions.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3