Cloud storage tier optimization through storage object classification

Author:

Khan Akif Quddus,Matskin Mihhail,Prodan Radu,Bussler Christoph,Roman Dumitru,Soylu Ahmet

Abstract

AbstractCloud storage adoption has increased over the years given the high demand for fast processing, low access latency, and ever-increasing amount of data being generated by, e.g., Internet of Things applications. In order to meet the users’ demands and provide a cost-effective solution, cloud service providers offer tiered storage; however, keeping the data in one tier is not cost-effective. In this respect, cloud storage tier optimization involves aligning data storage needs with the most suitable and cost-effective storage tier, thus reducing costs while ensuring data availability and meeting performance requirements. Ideally, this process considers the trade-off between performance and cost, as different storage tiers offer different levels of performance and durability. It also encompasses data lifecycle management, where data is automatically moved between tiers based on access patterns, which in turn impacts the storage cost. In this respect, this article explores two novel classification approaches, rule-based and game theory-based, to optimize cloud storage cost by reassigning data between different storage tiers. Four distinct storage tiers are considered: premium, hot, cold, and archive. The viability and potential of the proposed approaches are demonstrated by comparing cost savings and analyzing the computational cost using both fully-synthetic and semi-synthetic datasets with static and dynamic access patterns. The results indicate that the proposed approaches have the potential to significantly reduce cloud storage cost, while being computationally feasible for practical applications. Both approaches are lightweight and industry- and platform-independent.

Funder

HORIZON EUROPE Framework Programme

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DCT-CNN Hybrid Model for High-Capacity and Secure Data Concealment in Encrypted Images;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3