On cycling risk and discomfort: urban safety mapping and bike route recommendations

Author:

Castells-Graells David,Salahub Christopher,Pournaras EvangelosORCID

Abstract

AbstractBike usage in Smart Cities is paramount for sustainable urban development: cycling promotes healthier lifestyles, lowers energy consumption, lowers carbon emissions, and reduces urban traffic. However, the expansion and increased use of bike infrastructure has been accompanied by a glut of bike accidents, a trend jeopardizing the urban bike movement. This paper leverages data from a diverse spectrum of sources to characterise geolocated bike accident severity and, ultimately, study cycling risk and discomfort. Kernel density estimation generates a continuous, empirical, spatial risk estimate which is mapped in a case study of Zürich city. The roles of weather, time, accident type, and severity are illustrated. A predominance of self-caused accidents motivates an open-source software artifact for personalized route recommendations. This software is used to collect open baseline route data that are compared with alternative routes minimizing risk and discomfort. These contributions have the potential to provide invaluable infrastructure improvement insights to urban planners, and may also improve the awareness of risk in the urban environment among experienced and novice cyclists alike.

Funder

University of Leeds

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Numerical Analysis,Theoretical Computer Science,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RobotCycle: Assessing Cycling Safety in Urban Environments;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

2. IMPACT OF ENVIRONMENTAL AND DEMOGRAPHIC FACTORS ON URBAN CYCLING;Journal of Urban and Regional Analysis;2024-04-10

3. Discrete-Choice Multi-agent Optimization: Decentralized Hard Constraint Satisfaction for Smart Cities;Lecture Notes in Computer Science;2024

4. 3, 2, 1, Drones Go! A Testbed to Take Off UAV Swarm Intelligence for Distributed Sensing;Advances in Intelligent Systems and Computing;2024

5. Evaluating cyclist ride quality on different bicycle streets;Transportation Research Procedia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3