A comparative study of LSTM-ED architectures in forecasting day-ahead solar photovoltaic energy using Weather Data

Author:

Ekinci Ekin

Abstract

AbstractSolar photovoltaic (PV) energy, with its clean, local, and renewable features, is an effective complement to traditional energy sources today. However, the photovoltaic power system is highly weather-dependent and therefore has unstable and intermittent characteristics. Despite the negative impact of these features on solar sources, the increase in worldwide installed PV capacity has made solar energy prediction an important research topic. This study compares three encoder-decoder (ED) networks for day-ahead solar PV energy prediction: Long Short-Term Memory ED (LSTM-ED), Convolutional LSTM ED (Conv-LSTM-ED), and Convolutional Neural Network and LSTM ED (CNN-LSTM-ED). The models are tested using 1741-day-long datasets from 26 PV panels in Istanbul, Turkey, considering both power and energy output of the panels and meteorological features. The results show that the Conv-LSTM-ED with 50 iterations is the most successful model, achieving an average prediction score of up to 0.88 over R-square (R2). Evaluation of the iteration counts’ effect reveals that the Conv-LSTM-ED with 50 iterations also yields the lowest Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values, confirming its success. In addition, the fitness and effectiveness of the models are evaluated, with the Conv-LSTM-ED achieving the lowest Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values for each iteration. The findings of this work can help researchers build the best data-driven methods for forecasting PV solar energy based on PV features and meteorological features.

Funder

Sakarya University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A solar irradiance forecasting model using iterative filtering and bidirectional long short-term memory;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3