Undergraduate students’ beliefs about diverse approaches to making engineering design decisions: Exploring change during a capstone course

Author:

Leonard Alexia,Guanes Giselle,Dringenberg Emily

Abstract

AbstractWell-structured, de-contextualized problems that can be solved using solely technical approaches remain a large component of the engineering education curriculum. As a result, students may mistakenly believe that all engineering work can be done the same way—without the use of other approaches. Capstone design courses are an established way of exposing undergraduate students to ill-structured design tasks that more realistically reflect engineering practice. Yet, little is known about the influence of their capstone design experiences on their beliefs about how engineering design decisions are made. Our study compared students’ beliefs about four diverse approaches (technical, empathic, guess-based, and experience-based) to making engineering design decisions at the start of their capstone to their beliefs held at the end of their capstone. We conducted and analyzed qualitative transcripts from one-on-one, semi-structured interviews with 17 capstone students. We found little evidence that students’ experience in capstone courses changed their beliefs about diverse approaches to making engineering design decisions. The minimal change that we did find in students’ beliefs was primarily about guess-based approaches, and that change was not uniform amongst the students who did demonstrate change. Our findings point to the resiliency of students’ beliefs about approaches to design decisions throughout an engineering capstone design experience. Therefore, we recommend instructors foster reflexivity within their classrooms to disrupt these limited, normative beliefs about the approaches needed to make engineering design decisions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,Education

Reference81 articles.

1. ABET. (2020). Criteria for accrediting engineering programs, 2019-2020. Retrieved from https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#GC3.

2. Akin, Ö., & Lin, C. (1995). Design protocol data and novel design decisions. Design Studies, 16(2), 211–236.

3. Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works: Seven research-based principles for smart teaching. John Wiley & Sons.

4. Badke-Schaub, P., & Eris, O. (2014). A theoretical approach to intuition in design: Does design methodology need to account for unconscious processes? In A. Chakrabarti & L. T. M. Blessing (Eds.), An anthology of theories and models of design: Philosophy, approaches and empirical explorations (pp. 353–370). Springer.

5. Bailey, R., & Szabo, Z. (2007). Assessing engineering design process knowledge. International Journal of Engineering Education, 22(3), 508.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3