An empirical study on immersive technology in synchronous hybrid learning in design education

Author:

Kee TrisORCID,Zhang HaoORCID,King Ronnel B.

Abstract

AbstractImmersive technology plays an increasingly important role in design education, supporting digital literacy and experiential learning in higher education, particularly in the post-COVID-19 context. Many design disciplines, such as Architecture and Landscape Design, which used to rely heavily on physical field trips, and dialogic studios as signature pedagogies, had to adapt to the proliferation of innovative educational technologies due to the suspension of face-to-face teaching and learning. Augmented reality and virtual reality are now extensively used in technology and design education to support a more interactive, collaborative, and student-centred approach to learning. This paper expands on a pilot research study on the transition from traditional signature pedagogies of studio-based design education to technology-enhanced collaborative learning to support experiential learning. Based on Kolb’s experiential learning framework concerning four learning modes, namely, concrete experience (CE), reflective observation (RO), abstract conceptualisation (AC), and active experimentation (AE), this paper analyses data from 75 undergraduate students across four cohorts in three different higher education institutions in Hong Kong. They were surveyed on their experiences of synchronous hybrid virtual experiential learning with design and technology curricula. Furthermore, six students were interviewed about their experiences. The research findings confirm two research hypotheses showing that immersive experiential learning could constructively align RO and AE, thus bringing an overall positive impact on the experiential learning process, but shows no conclusive influence on promoting CE, especially AC. The quantitative findings and qualitative results gave new insights into the discussion of the theoretical and practical implications of the study.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3