Large-scale Patterning of Hydrophobic Silicon Nanostructure Arrays Fabricated by Dual Lithography and Deep Reactive Ion Etching

Author:

Ma Zhibo,Jiang Chengyu,Yuan Weizheng,He Yang

Abstract

Abstract We describe a simple but efficient technique to fabricate large-scale arrays of highly ordered silicon nanostructures. By coupling dual lithography using light of 351.1 nm wavelength with deep reactive ion etching (DRIE), silicon nanostructures of excellent regularity and uniform coverage were achieved. The proposed nanofabrication method not only simplified the nanofabrication process but also produced high-aspect-ratio (higher than 15) nanostructures. The scalloping problem was also controlled by regulating DRIE parameters. The process is rapid, cheap, examined to optimize the fabrication process, and has the potential to be scaled up to large areas. The contact angle of a water droplet atop the surface is larger than 15°. Moreover, by coupling black silicon process with DRIE-based microfabrication, three-dimensional nano/nano dual-scale structures which show robust and stable hydrophobicity have been achieved. This process opens new application possibilities in optical, photoelectric, microelectronic, catalytic and biomedical applications.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3