Author:
Govindappa Chandrappa K.,Venkatarangaiah Venkatesha T.,Hamid Sharifah B. Abd
Abstract
Abstract
In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn2SnO4 (ZTO) nanoparticles using aqueous sodium bicarbonate (NaHCO3) and sodium stannate (Na2SnO3) electrolyte. The sacrificial Zn was used as anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were respectively varied from 30 to 120 mmol and 0.05 to 1.5 A/dm2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 60 to 600°C. The crystallite sizes in the range of 24-53 nm were calculated based on Debye-Scherrer equation. Scanning electron microscope and transmission electron microscopy results reveal that all the particles have cubic morphology with diameter of 40–50 nm. The as-prepared ZTO samples showed higher catalytic activity towards the degradation of methylene blue (MB) dye, and 90% degradation was found for the sample calcined at 600°C, which is greater than that of commercial TiO2-P25 photocatalysts. The photodegradation efficiency of ZTO samples was found to be a function of exposure time and the dye solution pH value. These results indicate that the ZTO nanoparticles may be employed to remove dyes from wastewater.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献