CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice

Author:

Liu Hailin,Hu Xiangnan,Jiang Rong,Cai Jianghui,Lin Qiao,Fan Zhiguo,Zhao Pan,Wang Song,Zou Chunqiao,Du Weimin,Dong Zhi,Liu YingjuORCID

Abstract

Abstract Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)–induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.

Funder

Chongqing Science and Technology Commission

Chongqing Municipal Health Bureau

Publisher

Springer Science and Business Media LLC

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3