Trustworthiness of voice-based assistants: integrating interlocutor and intermediary predictors

Author:

Weidmüller LisaORCID,Etzrodt KatrinORCID,Engesser SvenORCID

Abstract

AbstractWhen intelligent voice-based assistants (VBAs) present news, they simultaneously act as interlocutors and intermediaries, enabling direct and mediated communication. Hence, this study discusses and investigates empirically how interlocutor and intermediary predictors affect an assessment that is relevant for both: trustworthiness. We conducted a secondary analysis using data from two online surveys in which participants (N = 1288) had seven quasi-interactions with either Alexa or Google Assistant and calculated hierarchical regression analyses. Results show that (1) interlocutor and intermediary predictors influence people’s trustworthiness assessments when VBAs act as news presenters, and (2) that different trustworthiness dimensions are affected differently: The intermediary predictors (information credibility; company reputation) were more important for the cognition-based trustworthiness dimensions integrity and competence. In contrast, intermediary and interlocutor predictors (ontological classification; source attribution) were almost equally important for the affect-based trustworthiness dimension benevolence.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology

Reference96 articles.

1. acatech, & Körber-Stiftung (2019). TechnikRadar 2019: Was die Deutschen über Technik denken [Technology radar 2019: What Germans think about technology]. https://www.acatech.de/publikation/technikradar-2019/. Accessed 9 Jan 2020.

2. Ammari, T., Kaye, J., Tsai, J. Y., & Bentley, F. (2019). Music, search, and IoT: How people (really) use voice assistants. ACM Transactions on Computer-Human Interaction, 26(3), 1–28. https://doi.org/10.1145/3311956.

3. Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly, 93(1), 59–79. https://doi.org/10.1177/1077699015606057.

4. Banks, J. (2021). Of like mind: The (mostly) similar mentalizing of robots and humans. Technology, Mind, and Behavior. https://doi.org/10.1037/tmb0000025.

5. Beierlein, C., Kemper, C. J., Kovaleva, A., & Rammstedt, B. (2012). Kurzskala zur Messung des zwischenmenschlichen Vertrauens [Short scale for measuring interpersonal trust]. GESIS-Working Papers. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-312126. Accessed 10 Oct 2017.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What HMC Teaches Us About Authenticity;Human-Machine Communication;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3