The use of B-splines to represent the topography of river networks

Author:

Boergens EvaORCID,Schmidt Michael,Seitz Florian

Abstract

AbstractThis work presents a new extension to B-Splines that enables them to model functions on directed tree graphs such as non-braided river networks. The main challenge of the application of B-splines to graphs is their definition in the neighbourhood of nodes with more than two incident edges. Achieving that the B-splines are continuous at these points is non-trivial. For both, simplification reasons and in view of our application, we limit the graphs to directed tree graphs. To fulfil the requirement of continuity, the knots defining the B-Splines need to be located symmetrically along the edges with the same direction. With such defined B-Splines, we approximate the topography of the Mekong River system from scattered height data along the river. To this end, we first test and validate successfully the method with synthetic water level data, with and without added annual signal. The quality of the resulting heights is assessed besides others by means of root mean square errors (RMSE) and mean absolute differences (MAD). The RMSE values are 0.26 m and 1.05 m without and with added annual variation respectively and the MAD values are even lower with 0.11 m and 0.60 m. For the second test, we use real water level observations measured by satellite altimetry. Again, we successfully estimate the river topography, but also discuss the short comings and problems with unevenly distributed data. The unevenly distributed data leads to some very large outliers close to the upstream ends of the rivers tributaries and in regions with rapidly changing topography such as the Mekong Falls. Without the outlier removal the standard deviation of the resulting heights can be as large as 50 m with a mean value of 15.73 m. After the outlier removal the mean standard deviation drops to 8.34 m.

Funder

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3