Abstract
AbstractThe pollution of groundwater, essential for supporting populations and agriculture, can have catastrophic consequences. Thus, accurate modeling of water pollution at the surface and in groundwater aquifers is vital. Here, we consider a density-driven groundwater flow problem with uncertain porosity and permeability. Addressing this problem is relevant for geothermal reservoir simulations, natural saline-disposal basins, modeling of contaminant plumes and subsurface flow predictions. This strongly nonlinear time-dependent problem describes the convection of a two-phase flow, whereby a liquid flows and propagates into groundwater reservoirs under the force of gravity to form so-called “fingers”. To achieve an accurate numerical solution, fine spatial resolution with an unstructured mesh and, therefore, high computational resources are required. Here we run a parallelized simulation toolbox ug4 with a geometric multigrid solver on a parallel cluster, and the parallelization is carried out in physical and stochastic spaces. Additionally, we demonstrate how the ug4 toolbox can be run in a black-box fashion for testing different scenarios in the density-driven flow. As a benchmark, we solve the Elder-like problem in a 3D domain. For approximations in the stochastic space, we use the generalized polynomial chaos expansion. We compute the mean, variance, and exceedance probabilities for the mass fraction. We use the solution obtained from the quasi-Monte Carlo method as a reference solution.
Funder
Alexander von Humboldt-Stiftung
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,Modeling and Simulation
Reference101 articles.
1. Askey, R., Wilson, J.A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. American Mathematical Society, Providence (1985)
2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)
3. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)
4. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)
5. Bear, J.: Dynamics of Fluid in Porous Media. Dover Publications, INC, New York (1972)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献