Predicting the spatial distribution of stable isotopes in precipitation using a machine learning approach: a comparative assessment of random forest variants

Author:

Erdélyi DánielORCID,Kern ZoltánORCID,Nyitrai TamásORCID,Hatvani István GáborORCID

Abstract

AbstractStable isotopes of hydrogen and oxygen are important natural tracers with a wide variety of environmental applications (e.g., the exploration of the water cycle, ecology and food authenticity). The spatially explicit predictions of their variations are obtained through various interpolation techniques. In the present work, a classical random forest (RF) and two of its variants were applied. RF and a random forest version employing buffer distance (RFsp) were applied to each month separately, while a random forest model was trained using all data employing month and year as categorical variables (RFtg). Their performance in predicting the spatial variability of precipitation stable oxygen isotope values for 2008–2017 across Europe was compared. In addition, a comparison was made with a publicly available alternative machine learning model which employs extreme gradient boosting. Input data was retrieved from the Global Network of Isotopes in Precipitation (GNIP; no. of stations: 144) and other national datasets (no. of stations: 127). Comparisons were made on the basis of absolute differences, median, mean absolute error and Lin’s concordance correlation coefficient. All variants were capable of reproducing the overall trends and seasonal patterns over time of precipitation stable isotope variability measured at each chosen validation site across Europe. The most important predictors were latitude in the case of the RF, and meteorological variables (vapor pressure, saturation vapor pressure, and temperature) in the case of the RFsp and RFtg models. Diurnal temperature range had the weakest predictive power in every case. In conclusion, it may be stated that with the merged dataset, combining GNIP and other national datasets, RFsp yielded the smallest mean absolute error 1.345‰) and highest Lin’s concordance correlation coefficient (0.987), while with extreme gradient boosting (based on only the GNIP data) the mean absolute error was 1.354‰, and Lin’s concordance correlation coefficient was 0.984, although it produced the lowers overall median value (1.113‰), while RFsp produced 1.124‰. The most striking systematic bias was observed in the summer season in the northern validation stations; this, however, diminished from 2014 onward, the point after which stations beyond 55° N are available in the training set.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

ELKH Research Centre for Astronomy and Earth Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3