Modelling spatial covariances for terrestrial water storage variations verified with synthetic GRACE-FO data

Author:

Boergens EvaORCID,Dobslaw HenrykORCID,Dill RobertORCID,Thomas Maik,Dahle ChristophORCID,Murböck MichaelORCID,Flechtner FrankORCID

Abstract

AbstractGridded terrestrial water storage (TWS) variations observed by GRACE or GRACE-FO typically show a spatial correlation structure that is both anisotropic (direction-dependent) and non-homogeneous (latitude-dependent). We introduce a new correlation model to represent this structure. This correlation model allows GRACE and GRACE-FO data users to get realistic correlations of the TWS grids without the need to derive them from the formal spherical harmonic uncertainties. Further, we found that the modelled correlations fit the spatial structure of uncertainties to a greater extent in a simulation environment. The model is based on a direction-dependent Bessel function of the first kind which allows to model the longer correlation lengths in the longitudinal direction via a shape parameter, and also to account for residual GRACE striping errors that might remain after spatial filtering. The global scale and shape parameters vary with latitude by means of even Legendre polynomials. The correlation between two points transformed to covariance by scaling with the standard deviations of each point. The covariance model is valid on the sphere which is empirically verified with a Monte-Carlo approach. The covariance model is subsequently applied to 5 years of simulated GRACE-FO data which allow for immediate validation with true uncertainties from the differences between the input mass signal and the recovered gravity fields. Four different realisations of the point standard deviations were tested: two based on the formal errors provided with the simulated Stokes coefficients, and two based on empirical standard deviations, where the first is spatially variant and temporally invariant, and the second spatially invariant and temporally variant. These four different covariance models are applied to compute TWS time series uncertainties for both the fifty largest discharge basins and regular grid cells over the continents. These four models are compared with the true uncertainties available in the simulations. The two empirically-based covariance models provide more realistic TWS uncertainties than the ones based on the formal errors. Especially, the empirically-based covariance models are better in reflecting the spatial pattern of the uncertainties of the simulated GRACE-FO data including their latitude dependence. However, these modelled uncertainties are in general too large. But with only one global scaling factor, a statistical test confirms the equivalence between the empirically-based covariance model with temporally variable point standard deviations and the true uncertainties. Thus at the end, this covariance model represents the closest fit in the simulation environment. The simulated GRACE-FO data are assumed to be very realistic which is why we recommend the new covariance model to be further investigated for the characterisation of real GRACE and GRACE-FO terrestrial water storage data.

Funder

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3