Rate-induced tipping can trigger plankton blooms

Author:

Vanselow Anna,Halekotte Lukas,Pal Pinaki,Wieczorek Sebastian,Feudel Ulrike

Abstract

AbstractPlankton blooms are complex nonlinear phenomena whose occurrence can be described by the two-timescale (fast-slow) phytoplankton-zooplankton model introduced by Truscott and Brindley (Bulletin of Mathematical Biology 56(5):981–998, 1994). In their work, they observed that a sufficiently fast rise of the water temperature causes a critical transition from a low phytoplankton concentration to a single outburst: a so-called plankton bloom. However, the dynamical mechanism responsible for the observed transition has not been identified to the present day. Using techniques from geometric singular perturbation theory, we uncover the formerly overlooked rate-sensitive quasithreshold which is given by special trajectories called canards. The transition from low to high concentrations occurs when this rate-sensitive quasithreshold moves past the current state of the plankton system at some narrow critical range of warming rates. In this way, we identify rate-induced tipping as the underlying dynamical mechanism of largely unpredictable plankton blooms such as red tides, or more general, harmful algal blooms. Our findings explain the previously reported transitions to a single plankton bloom, and allow us to predict a new type of transition to a sequence of blooms for higher rates of warming. This could provide a possible mechanism of the observed increased frequency of harmful algal blooms.

Funder

DAAD-DST

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3