The biological cropping hypothesis over evolutionary time: an experimental test

Author:

Furness Euan N.ORCID,Sutton Mark D.ORCID

Abstract

AbstractEcological disturbance has been proposed to have a variety of effects on biodiversity. These mechanisms are well studied over shorter timescales through experimental manipulation of ecosystems, but the effect of disturbance on longer timescales, where evolutionary processes operate, is less well understood. This is at least in part because evolutionary processes are too slow to observe in experimental manipulations of ecosystems. Here, we use the Rapid Evolutionary Simulator system (REvoSim) to solve this problem. REvoSim is a spatially explicit, agent-based simulation tool that models both ecological and evolutionary processes and is capable of simulating many thousands of generations of evolution per hour in a population of up to 1 million organisms. We use REvoSim to evaluate the biological cropping hypothesis, which predicts that the non-selective culling of organisms from populations (“cropping”) can enhance diversity in those populations over long timescales by reducing the homogenising effects of competitive exclusion. Our experiments demonstrate that cropping alone can increase diversity within populations under certain circumstances: those where it has the net effect of reducing the selection pressure acting on those populations. However, intense cropping pressure may increase the selection pressure on organisms to reproduce rapidly, potentially offsetting the effects of reduced competitive exclusion on diversity. We also show that cropping alone is not sufficient to result in reproductive isolation within populations. This implies that, while cropping can maintain a high species diversity within an ecosystem, additional mechanisms must be invoked to generate that high diversity in the first instance.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3