Quantifying the effects of sensory stress on trophic cascades

Author:

Ng GabrielORCID,Baskett Marissa L.ORCID,Gaylord BrianORCID

Abstract

AbstractPredators mediate the strength of trophic cascades indirectly by decreasing the number of prey consuming a basal resource and by altering prey responses that dictate prey foraging. The strength of these indirect effects further depends on abiotic factors. For example, attributes of the environment, such as turbulent flows in aquatic habitats that disrupt spatial information available from chemical cues, can impose “sensory stresses” that impair the ability of predators or prey to detect each other. The multi-faceted impacts of sensory stress on both the predators and prey create challenges in predicting the overall effect on the trophic cascade. Here, we explore how sensory stress affects the strength of trophic cascades using a tri-trophic dynamical model that incorporates the sensory environment and anti-predatory responses. We explore two crucial parameters that govern outcomes of the model. First, we allow predation rates to either strengthen or weaken depending on whether prey or predators are more sensitive to sensory stress, respectively. Second, we explore scenarios where anti-predatory responses can either drive a strong or weak reduction in prey foraging. We find that sensory stress usually weakens trophic cascades except in scenarios where predators are relatively unaffected by sensory stress and the loss of anti-predatory responses does not affect prey foraging. The model finally suggests that “hydra effects” can manifest, whereby an increase in prey population occurs despite an increase in per capita predation. This last feature emerges due to the interaction between logistic growth of the basal resource and anti-predatory responses reducing the over-consumption of the basal resource.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3