Preferential cannibalism as a key stabilizing mechanism of intraguild predation systems with trophic polymorphic predators

Author:

Woodie Clara A.ORCID,Anderson Kurt E.ORCID

Abstract

AbstractTheory predicts intraguild predation (IGP) to be unstable despite its ubiquity in nature, prompting exploration of stabilizing mechanisms of IGP. One of the many ways IGP manifests is through inducible trophic polymorphisms in the intraguild (IG) predator, where a resource-eating predator morph competes with the intraguild (IG) prey for the shared resource while a top predator morph consumes the IG prey. Cannibalism is common in this type of system due to the top predator morph’s specialization on the trophic level below it, which includes the resource-eating predator morph. Here, we explore the consequences of inducible trophic polymorphisms in cannibal predators for IGP stability using an IGP model with and without cannibalism. We employ linear stability analysis and identify regions of coexistence based on the top predator morph’s preference for conspecifics vs. heterospecifics and the IG prey’s competitive ability relative to the resource-eating morph. Our findings reveal that preferential cannibalism (i.e., the preferential consumption of conspecifics) stabilizes the system when the IG prey and resource-eating morph have similar competitive abilities for the shared resource. Though original IGP theory finds that the IG prey must be a superior resource competitor as a general criterion for coexistence, this is not typically the case when the predator has an inducible trophic polymorphism and the resource-eating morph is specialized in resource acquisition. Preferential cannibalism may therefore be a key stabilizing mechanism in IGP systems with a cannibalistic, trophic polymorphic IG predators, providing further insight into what general mechanisms stabilize the pervasive IGP interaction.

Funder

National Science Foundation

The Spieth Award

The Lance and Maureen Loomer Endowed Award in Biology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3