Universal ontogenetic growth without fitted parameters: implications for life history invariants and population growth

Author:

Escala Andrés

Abstract

AbstractSince the work of von Bertalanffy (Q Rev Boil 32:217–231, 1957), several models have been proposed that relate the ontogenetic scaling of energy assimilation and metabolism to growth, which are able to describe ontogenetic growth trajectories for living organisms and collapse them onto a single universal curve (West et al. in Nature 413:628–631, 2001; Barnavar et al. in Nature 420:626, 2002). Nevertheless, all these ontogenetic growth models critically depend on fitting parameters and on the allometric scaling of the metabolic rate. Using a new metabolic rate relation (Escala in Theor Ecol 12(4):415–425, 2019) applied to a Bertalanffy-type ontogenetic growth equation, we find that ontogenetic growth can also be described by a universal growth curve for all studied species, but without the aid of any fitting parameters (i.e., no fitting procedure is performed on individual growth curves). We find that the inverse of the heart frequency $$\mathrm f_H$$ f H , rescaled by the ratio of the specific energies for biomass creation and metabolism, defines the characteristic timescale for ontogenetic growth. Moreover, our model also predicts a generation time and lifespan that explain the origin of several “Life History Invariants’ (Charnov in Oxford University Press, Oxford, 1993) and predict that the Malthusian parameter should be inversely proportional to both the generation time and lifespan, in agreement with the data in the literature (Duncan et al. in Ecology 88:324–333 2007; Dillingham et al. in Paper 535, 2016; Hatton et al. in PNAS 116(43):21616–21622 2019). In our formalism, several critical timescales and rates (lifespan, generation time, and intrinsic population growth rate) are all proportional to the heart frequency $$\mathrm f_H$$ f H , and thus, their allometric scaling relations come directly from the allometry of the heart frequency, which is typically $$\mathrm f_H \propto M^{-0.25}$$ f H M - 0.25 under basal conditions.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3