Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges

Author:

Weikert ThomasORCID,Francone Marco,Abbara Suhny,Baessler Bettina,Choi Byoung Wook,Gutberlet Matthias,Hecht Elizabeth M.,Loewe Christian,Mousseaux Elie,Natale Luigi,Nikolaou Konstantin,Ordovas Karen G.,Peebles Charles,Prieto Claudia,Salgado Rodrigo,Velthuis Birgitta,Vliegenthart Rozemarijn,Bremerich Jens,Leiner Tim

Abstract

Abstract Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. Key Points • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms.

Funder

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3