MR-self Noise2Noise: self-supervised deep learning–based image quality improvement of submillimeter resolution 3D MR images
Author:
Funder
Ministry of Science and ICT, South Korea
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00330-022-09243-y.pdf
Reference40 articles.
1. Obusez EC, Hui F, Hajj-ali RA et al (2014) High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol 35:1527–1532. https://doi.org/10.3174/ajnr.a3909
2. Pinker K, Noebauer-Huhmann IM, Stavrou I et al (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28:1280–1286. https://doi.org/10.3174/ajnr.a0540
3. Noh Y, Sung YH, Lee J, Kim EY (2015) Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 36:2010–2016. https://doi.org/10.3174/ajnr.a4412
4. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530. https://doi.org/10.1137/040616024
5. Zhang K, Zuo W, Chen Y et al (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26:3142–3155. https://doi.org/10.1109/tip.2017.2662206
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning improves quality of intracranial vessel wall MRI for better characterization of potentially culprit plaques;Scientific Reports;2024-08-16
2. Unsupervised denoising of photoacoustic images based on the Noise2Noise network;Biomedical Optics Express;2024-07-02
3. Deep Learning–Based Reconstruction of 3D T1 SPACE Vessel Wall Imaging Provides Improved Image Quality with Reduced Scan Times: A Preliminary Study;American Journal of Neuroradiology;2024-06-18
4. Knowledge‐driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un‐supervised learning;Magnetic Resonance in Medicine;2024-04-16
5. A Review on Low-Dose Emission Tomography Post-Reconstruction Denoising With Neural Network Approaches;IEEE Transactions on Radiation and Plasma Medical Sciences;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3