Combined quantitative T2 mapping and [18F]FDG PET could improve lateralization of mesial temporal lobe epilepsy

Author:

Zhang Miao,Huang Hui,Liu Wei,Tang Lihong,Li Qikang,Wang Jia,Huang Xinyun,Lin Xiaozhu,Meng Hongping,Wang Jin,Zhan Shikun,Li Biao,Luo JieORCID

Abstract

Abstract Objectives To investigate whether quantitative T2 mapping is complementary to [18F]FDG PET in epileptogenic zone detection, thus improving the lateralization accuracy for drug-resistant mesial temporal lobe epilepsy (MTLE) using hybrid PET/MR. Methods We acquired routine structural MRI, T2-weighted FLAIR, whole brain T2 mapping, and [18F]FDG PET in 46 MTLE patients and healthy controls on a hybrid PET/MR scanner, followed with computing voxel-based z-score maps of patients in reference to healthy controls. Asymmetry indexes of the hippocampus were calculated for each imaging modality, which then enter logistic regression models as univariate or multivariate for lateralization. Stereoelectroencephalography (SEEG) recordings and clinical decisions were collected as gold standard. Results Routine structural MRI and T2w-FLAIR lateralized 47.8% (22/46) of MTLE patients, and FDG PET lateralized 84.8% (39/46). T2 mapping combined with [18F]FDG PET improved the lateralization accuracy by correctly lateralizing 95.6% (44/46) of MTLE patients. The asymmetry indexes of hippocampal T2 relaxometry and PET exhibit complementary tendency in detecting individual laterality, especially for MR-negative patients. In the quantitative analysis of z-score maps, the ipsilateral hippocampus had significantly lower SUVR (LTLE, p < 0.001; RTLE, p < 0.001) and higher T2 value (LTLE, p < 0.001; RTLE, p = 0.001) compared to the contralateral hippocampus. In logistic regression models, PET/T2 combination resulted in the highest AUC of 0.943 in predicting lateralization for MR-negative patients, followed by PET (AUC = 0.857) and T2 (AUC = 0.843). Conclusions The combination of quantitative T2 mapping and [18F]FDG PET could improve lateralization for temporal lobe epilepsy. Key Points Quantitative T2 mapping and18F-FDG PET are complementary in the characterization of hippocampal alterations of MR-negative temporal lobe epilepsy patients. The combination of quantitative T2 and18F-FDG PET obtained from hybrid PET/MR could improve lateralization for temporal lobe epilepsy.

Funder

Ministry of Science and Technology of the People's Republic of China

Shanghai Science and Technology Commission project

Shanghai Municipal Key Clinical Specialty

Three-year planning of the Shanghai Shen-Kang Promoting Hospital's Clinical Skills and Innovative Ability Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3