Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00330-022-09289-y.pdf
Reference30 articles.
1. Miller TT (2008) Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology 246:662–674. https://doi.org/10.1148/radiol.2463061038
2. Vogrin M, Trojner T, Kelc R (2020) Artificial intelligence in musculoskeletal oncological radiology. Radiol Oncol 55:1–6. https://doi.org/10.2478/raon-2020-0068
3. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708
4. Rosenberg AE (2013) WHO classification of soft tissue and bone, fourth edition: Summary and commentary. Curr Opin Oncol 25:571–573. https://doi.org/10.1097/01.cco.0000432522.16734.2d
5. Gemescu IN, Thierfelder KM, Rehnitz C, Weber MA (2019) Imaging features of bone tumors: conventional radiographs and MR imaging correlation. Magn Reson Imaging Clin N Am 27:753–767. https://doi.org/10.1016/j.mric.2019.07.008
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors;Frontiers in Radiology;2024-09-05
2. High‐quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X‐ray diagnosis;Cancer Science;2024-09-02
3. Enhanced enchondroma detection from x‐ray images using deep learning: A step towards accurate and cost‐effective diagnosis;Journal of Orthopaedic Research;2024-07-15
4. A radiograph-based deep learning model improves radiologists’ performance for classification of histological types of primary bone tumors: A multicenter study;European Journal of Radiology;2024-07
5. Improved YOLOv5s-based algorithm for foreign object intrusion detection on overhead transmission lines;Energy Reports;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3