Deep learning–based fully automated body composition analysis of thigh CT: comparison with DXA measurement
Author:
Funder
Korean government
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00330-022-08770-y.pdf
Reference34 articles.
1. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482
2. Tavoian D, Ampomah K, Amano S, Law TD, Clark BC (2019) Changes in DXA-derived lean mass and MRI-derived cross-sectional area of the thigh are modestly associated. Sci Rep 9:10028
3. Lee K, Shin Y, Huh J et al (2019) Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol 20:205–217
4. Boutin RD, Yao L, Canter RJ, Lenchik L (2015) Sarcopenia: current concepts and imaging implications. AJR Am J Roentgenol 205:W255–W266
5. Ruhdorfer A, Wirth W, Eckstein F (2015) Relationship between isometric thigh muscle strength and minimum clinically important differences in knee function in osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res 67:509–518
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans;Acta Radiologica;2024-07-23
2. The challenges of assessing adiposity in a clinical setting;Nature Reviews Endocrinology;2024-07-15
3. Can artificial intelligence detect type 2 diabetes in women by evaluating the pectoral muscle on tomosynthesis: diagnostic study;Insights into Imaging;2024-03-27
4. The agreement of different techniques for muscle measurement in diagnosing sarcopenia: a systematic review and meta-analysis;Quantitative Imaging in Medicine and Surgery;2024-03
5. Application of deep learning in analysing morphological parameters of cervical computed tomography scans;Chinese Journal of Academic Radiology;2024-02-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3