Accelerating breast MRI acquisition with generative AI models

Author:

Okolie AugustineORCID,Dirrichs Timm,Huck Luisa Charlotte,Nebelung Sven,Arasteh Soroosh Tayebi,Nolte Teresa,Han Tianyu,Kuhl Christiane Katharina,Truhn Daniel

Abstract

Abstract Objectives To investigate the use of the score-based diffusion model to accelerate breast MRI reconstruction. Materials and methods We trained a score-based model on 9549 MRI examinations of the female breast and employed it to reconstruct undersampled MRI images with undersampling factors of 2, 5, and 20. Images were evaluated by two experienced radiologists who rated the images based on their overall quality and diagnostic value on an independent test set of 100 additional MRI examinations. Results The score-based model produces MRI images of high quality and diagnostic value. Both T1- and T2-weighted MRI images could be reconstructed to a high degree of accuracy. Two radiologists rated the images as almost indistinguishable from the original images (rating 4 or 5 on a scale of 5) in 100% (radiologist 1) and 99% (radiologist 2) of cases when the acceleration factor was 2. This fraction dropped to 88% and 70% for an acceleration factor of 5 and to 5% and 21% with an extreme acceleration factor of 20. Conclusion Score-based models can reconstruct MRI images at high fidelity, even at comparatively high acceleration factors, but further work on a larger scale of images is needed to ensure that diagnostic quality holds. Clinical relevance statement The number of MRI examinations of the breast is expected to rise with MRI screening recommended for women with dense breasts. Accelerated image acquisition methods can help in making this examination more accessible. Key Points Accelerating breast MRI reconstruction remains a significant challenge in clinical settings. Score-based diffusion models can achieve near-perfect reconstruction for moderate undersampling factors. Faster breast MRI scans with maintained image quality could revolutionize clinic workflows and patient experience.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3