Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)

Author:

Topff LaurensORCID,Groot Lipman Kevin B. W.,Guffens Frederic,Wittenberg Rianne,Bartels-Rutten Annemarieke,van Veenendaal Gerben,Hess Mirco,Lamerigts Kay,Wakkie Joris,Ranschaert Erik,Trebeschi Stefano,Visser Jacob J.,Beets-Tan Regina G. H.,Guiot Julien,Snoeckx Annemiek,Kint Peter,Van Hoe Lieven,Quattrocchi Carlo Cosimo,Dieckens Dennis,Lounis Samir,Schulze Eric,Sjer Arnout Eric-bart,van Vucht Niels,Tielbeek Jeroen A.W.,Raat Frank,Eijspaart Daniël,Abbas Ausami,

Abstract

Abstract Objectives Only few published artificial intelligence (AI) studies for COVID-19 imaging have been externally validated. Assessing the generalizability of developed models is essential, especially when considering clinical implementation. We report the development of the International Consortium for COVID-19 Imaging AI (ICOVAI) model and perform independent external validation. Methods The ICOVAI model was developed using multicenter data (n = 1286 CT scans) to quantify disease extent and assess COVID-19 likelihood using the COVID-19 Reporting and Data System (CO-RADS). A ResUNet model was modified to automatically delineate lung contours and infectious lung opacities on CT scans, after which a random forest predicted the CO-RADS score. After internal testing, the model was externally validated on a multicenter dataset (n = 400) by independent researchers. CO-RADS classification performance was calculated using linearly weighted Cohen’s kappa and segmentation performance using Dice Similarity Coefficient (DSC). Results Regarding internal versus external testing, segmentation performance of lung contours was equally excellent (DSC = 0.97 vs. DSC = 0.97, p = 0.97). Lung opacities segmentation performance was adequate internally (DSC = 0.76), but significantly worse on external validation (DSC = 0.59, p < 0.0001). For CO-RADS classification, agreement with radiologists on the internal set was substantial (kappa = 0.78), but significantly lower on the external set (kappa = 0.62, p < 0.0001). Conclusion In this multicenter study, a model developed for CO-RADS score prediction and quantification of COVID-19 disease extent was found to have a significant reduction in performance on independent external validation versus internal testing. The limited reproducibility of the model restricted its potential for clinical use. The study demonstrates the importance of independent external validation of AI models. Key Points • The ICOVAI model for prediction of CO-RADS and quantification of disease extent on chest CT of COVID-19 patients was developed using a large sample of multicenter data. • There was substantial performance on internal testing; however, performance was significantly reduced on external validation, performed by independent researchers. The limited generalizability of the model restricts its potential for clinical use. • Results of AI models for COVID-19 imaging on internal tests may not generalize well to external data, demonstrating the importance of independent external validation.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3