1. Santulli G (2013) Epidemiology of cardiovascular disease in the 21st century: updated updated numbers and updated facts. J Cardiovasc Dis Res 1:1–2
2. Xia C, Li X, Wang X et al (2019) A multi-modality network for cardiomyopathy death risk prediction with CMR images and clinical information. Medical image computing and computer assisted intervention – MICCAI 2019, Shenzhen, China, 13-17 Oct 2019. Available via https://cse.buffalo.edu/~siweilyu/papers/miccai19.pdf
3. Sundaram DSB, Arunachalam SP, Damani DN et al (2021) Natural language processing based machine learning model using cardiac MRI reports to identify hypertrophic cardiomyopathy patients. 2021 design of medical devices conference, Minneapolis, USA. https://doi.org/10.1115/DMD2021-1076
4. Alis D, Yergin M, Asmakutlu O et al (2021) The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle. Eur Radiol 31:2706–2715
5. Luo C, Shi CH, Li XJ, Wang X, Chen YC, Gao DR, Yin YB, Song Q, Wu X, Zhou JL (2020) Multi-task learning using attention-based convolutional encoder–decoder for dilated cardiomyopathy CMR segmentation and classification. Cmc-Comput Mater Con 63:995–1012