Cortical atrophy on baseline computed tomography imaging predicts clinical outcome in patients undergoing endovascular treatment for acute ischemic stroke

Author:

Brugnara Gianluca,Engel Adrian,Jesser Jessica,Ringleb Peter Arthur,Purrucker Jan,Möhlenbruch Markus A.,Bendszus Martin,Neuberger UlfORCID

Abstract

Abstract Objective Multiple variables beyond the extent of recanalization can impact the clinical outcome after acute ischemic stroke due to large vessel occlusions. Here, we assessed the influence of small vessel disease and cortical atrophy on clinical outcome using native cranial computed tomography (NCCT) in a large single-center cohort. Methods A total of 1103 consecutive patients who underwent endovascular treatment (EVT) due to occlusion of the middle cerebral artery territory were included. NCCT data were visually assessed for established markers of age-related white matter changes (ARWMC) and brain atrophy. All images were evaluated separately by two readers to assess the inter-observer variability. Regression and machine learning models were built to determine the predictive relevance of ARWMC and atrophy in the presence of important baseline clinical and imaging metrics. Results Patients with favorable outcome presented lower values for all measured metrics of pre-existing brain deterioration (p < 0.001). Both ARWMC (p < 0.05) and cortical atrophy (p < 0.001) were independent predictors of clinical outcome at 90 days when controlled for confounders in both regression analyses and led to a minor improvement of prediction accuracy in machine learning models (p < 0.001), with atrophy among the top-5 predictors. Conclusion NCCT-based cortical atrophy and ARWMC scores on NCCT were strong and independent predictors of clinical outcome after EVT. Clinical relevance statement Visual assessment of cortical atrophy and age-related white matter changes on CT could improve the prediction of clinical outcome after thrombectomy in machine learning models which may be integrated into existing clinical routines and facilitate patient selection. Key Points • Cortical atrophy and age-related white matter changes were quantified using CT-based visual scores. • Atrophy and age-related white matter change scores independently predicted clinical outcome after mechanical thrombectomy and improved machine learning–based prediction models. • Both scores could easily be integrated into existing clinical routines and prediction models.

Funder

Universitätsklinikum Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3