Knee landmarks detection via deep learning for automatic imaging evaluation of trochlear dysplasia and patellar height

Author:

Barbosa Roberto M.ORCID,Serrador LuísORCID,da Silva Manuel Vieira,Macedo Carlos Sampaio,Santos Cristina P.ORCID

Abstract

Abstract Objectives To develop and validate a deep learning–based approach to automatically measure the patellofemoral instability (PFI) indices related to patellar height and trochlear dysplasia in knee magnetic resonance imaging (MRI) scans. Methods A total of 763 knee MRI slices from 95 patients were included in the study, and 3393 anatomical landmarks were annotated for measuring sulcus angle (SA), trochlear facet asymmetry (TFA), trochlear groove depth (TGD) and lateral trochlear inclination (LTI) to assess trochlear dysplasia, and Insall-Salvati index (ISI), modified Insall-Salvati index (MISI), Caton Deschamps index (CDI) and patellotrochlear index (PTI) to assess patellar height. A U-Net based network was implemented to predict the landmarks’ locations. The successful detection rate (SDR) and the mean absolute error (MAE) evaluation metrics were used to evaluate the performance of the network. The intraclass correlation coefficient (ICC) was also used to evaluate the reliability of the proposed framework to measure the mentioned PFI indices. Results The developed models achieved good accuracy in predicting the landmarks’ locations, with a maximum value for the MAE of 1.38 ± 0.76 mm. The results show that LTI, TGD, ISI, CDI and PTI can be measured with excellent reliability (ICC > 0.9), and SA, TFA and MISI can be measured with good reliability (ICC > 0.75), with the proposed framework. Conclusions This study proposes a reliable approach with promising applicability for automatic patellar height and trochlear dysplasia assessment, assisting the radiologists in their clinical practice. Clinical relevance statement The objective knee landmarks detection on MRI images provided by artificial intelligence may improve the reproducibility and reliability of the imaging evaluation of trochlear anatomy and patellar height, assisting radiologists in their clinical practice in the patellofemoral instability assessment. Key Points • Imaging evaluation of patellofemoral instability is subjective and vulnerable to substantial intra and interobserver variability. Patellar height and trochlear dysplasia are reliably assessed in MRI by means of artificial intelligence (AI). The developed AI framework provides an objective evaluation of patellar height and trochlear dysplasia enhancing the clinical practice of the radiologists.

Funder

Fundação para a Ciência e a Tecnologia

Universidade do Minho

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3