Fully automated computational measurement of noise in positron emission tomography

Author:

Sartoretti Thomas,Skawran Stephan,Gennari Antonio G.,Maurer Alexander,Euler André,Treyer Valerie,Sartoretti Elisabeth,Waelti Stephan,Schwyzer Moritz,von Schulthess Gustav K.,Burger Irene A.,Huellner Martin W.,Messerli Michael

Abstract

Abstract Objectives To introduce an automated computational algorithm that estimates the global noise level across the whole imaging volume of PET datasets. Methods [18F]FDG PET images of 38 patients were reconstructed with simulated decreasing acquisition times (15–120 s) resulting in increasing noise levels, and with block sequential regularized expectation maximization with beta values of 450 and 600 (Q.Clear 450 and 600). One reader performed manual volume-of-interest (VOI) based noise measurements in liver and lung parenchyma and two readers graded subjective image quality as sufficient or insufficient. An automated computational noise measurement algorithm was developed and deployed on the whole imaging volume of each reconstruction, delivering a single value representing the global image noise (Global Noise Index, GNI). Manual noise measurement values and subjective image quality gradings were compared with the GNI. Results Irrespective of the absolute noise values, there was no significant difference between the GNI and manual liver measurements in terms of the distribution of noise values (p = 0.84 for Q.Clear 450, and p = 0.51 for Q.Clear 600). The GNI showed a fair to moderately strong correlation with manual noise measurements in liver parenchyma (r = 0.6 in Q.Clear 450, r = 0.54 in Q.Clear 600, all p < 0.001), and a fair correlation with manual noise measurements in lung parenchyma (r = 0.52 in Q.Clear 450, r = 0.33 in Q.Clear 600, all p < 0.001). Classification performance of the GNI for subjective image quality was AUC 0.898 for Q.Clear 450 and 0.919 for Q.Clear 600. Conclusion An algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. Clinical relevance statement An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking of clinical PET imaging within and across institutions. Key Points Noise is an important quantitative marker that strongly impacts image quality of PET images. An automated computational noise measurement algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking as well as protocol harmonization.

Funder

Palatin Foundation Switzerland

CRPP AI Oncological Imaging Network of the University of Zurich

Iten-Kohaut Foundation, Switzerland

University of Zurich

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3