Fully automated accurate patient positioning in computed tomography using anterior–posterior localizer images and a deep neural network: a dual-center study

Author:

Salimi Yazdan,Shiri Isaac,Akavanallaf Azadeh,Mansouri Zahra,Arabi Hossein,Zaidi HabibORCID

Abstract

Abstract Objectives This study aimed to improve patient positioning accuracy by relying on a CT localizer and a deep neural network to optimize image quality and radiation dose. Methods We included 5754 chest CT axial and anterior–posterior (AP) images from two different centers, C1 and C2. After pre-processing, images were split into training (80%) and test (20%) datasets. A deep neural network was trained to generate 3D axial images from the AP localizer. The geometric centerlines of patient bodies were indicated by creating a bounding box on the predicted images. The distance between the body centerline, estimated by the deep learning model and ground truth (BCAP), was compared with patient mis-centering during manual positioning (BCMP). We evaluated the performance of our model in terms of distance between the lung centerline estimated by the deep learning model and the ground truth (LCAP). Results The error in terms of BCAP was − 0.75 ± 7.73 mm and 2.06 ± 10.61 mm for C1 and C2, respectively. This error was significantly lower than BCMP, which achieved an error of 9.35 ± 14.94 and 13.98 ± 14.5 mm for C1 and C2, respectively. The absolute BCAP was 5.7 ± 5.26 and 8.26 ± 6.96 mm for C1 and C2, respectively. The LCAP metric was 1.56 ± 10.8 and −0.27 ± 16.29 mm for C1 and C2, respectively. The error in terms of BCAP and LCAP was higher for larger patients (p value < 0.01). Conclusion The accuracy of the proposed method was comparable to available alternative methods, carrying the advantage of being free from errors related to objects blocking the camera visibility. Key Points • Patient mis-centering in the anterior–posterior direction (AP) is a common problem in clinical practice which can degrade image quality and increase patient radiation dose. • We proposed a deep neural network for automatic patient positioning using only the CT image localizer, achieving a performance comparable to alternative techniques, such as the external 3D visual camera. • The advantage of the proposed method is that it is free from errors related to objects blocking the camera visibility and that it could be implemented on imaging consoles as a patient positioning support tool.

Funder

H2020 European Research Council

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3