AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size

Author:

Tobler Patrick,Cyriac Joshy,Kovacs Balazs K.,Hofmann Verena,Sexauer Raphael,Paciolla Fabiano,Stieltjes Bram,Amsler Felix,Hirschmann AnnaORCID

Abstract

Abstract Objectives To evaluate the performance of a deep convolutional neural network (DCNN) in detecting and classifying distal radius fractures, metal, and cast on radiographs using labels based on radiology reports. The secondary aim was to evaluate the effect of the training set size on the algorithm’s performance. Methods A total of 15,775 frontal and lateral radiographs, corresponding radiology reports, and a ResNet18 DCNN were used. Fracture detection and classification models were developed per view and merged. Incrementally sized subsets served to evaluate effects of the training set size. Two musculoskeletal radiologists set the standard of reference on radiographs (test set A). A subset (B) was rated by three radiology residents. For a per-study-based comparison with the radiology residents, the results of the best models were merged. Statistics used were ROC and AUC, Youden’s J statistic (J), and Spearman’s correlation coefficient (ρ). Results The models’ AUC/J on (A) for metal and cast were 0.99/0.98 and 1.0/1.0. The models’ and residents’ AUC/J on (B) were similar on fracture (0.98/0.91; 0.98/0.92) and multiple fragments (0.85/0.58; 0.91/0.70). Training set size and AUC correlated on metal (ρ = 0.740), cast (ρ = 0.722), fracture (frontal ρ = 0.947, lateral ρ = 0.946), multiple fragments (frontal ρ = 0.856), and fragment displacement (frontal ρ = 0.595). Conclusions The models trained on a DCNN with report-based labels to detect distal radius fractures on radiographs are suitable to aid as a secondary reading tool; models for fracture classification are not ready for clinical use. Bigger training sets lead to better models in all categories except joint affection. Key Points • Detection of metal and cast on radiographs is excellent using AI and labels extracted from radiology reports. • Automatic detection of distal radius fractures on radiographs is feasible and the performance approximates radiology residents. • Automatic classification of the type of distal radius fracture varies in accuracy and is inferior for joint involvement and fragment displacement.

Funder

Gottfried und Julia Bangerter-Rhyner-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3