Application of deep learning–based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time

Author:

Kaniewska MalwinaORCID,Deininger-Czermak Eva,Getzmann Jonas M.,Wang Xinzeng,Lohezic Maelene,Guggenberger Roman

Abstract

Abstract Objectives To compare the image quality and diagnostic performance of conventional motion-corrected periodically rotated overlapping parallel line with enhanced reconstruction (PROPELLER) MRI sequences with post-processed PROPELLER MRI sequences using deep learning-based (DL) reconstructions. Methods In this prospective study of 30 patients, conventional (19 min 18 s) and accelerated MRI sequences (7 min 16 s) using the PROPELLER technique were acquired. Accelerated sequences were post-processed using DL. The image quality and diagnostic confidence were qualitatively assessed by 2 readers using a 5-point Likert scale. Analysis of the pathological findings of cartilage, rotator cuff tendons and muscles, glenoid labrum and subacromial bursa was performed. Inter-reader agreement was calculated using Cohen’s kappa statistic. Quantitative evaluation of image quality was measured using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Results Mean image quality and diagnostic confidence in evaluation of all shoulder structures were higher in DL sequences (p value = 0.01). Inter-reader agreement ranged between kappa values of 0.155 (assessment of the bursa) and 0.947 (assessment of the rotator cuff muscles). In 17 cases, thickening of the subacromial bursa of more than 2 mm was only visible in DL sequences. The pathologies of the other structures could be properly evaluated by conventional and DL sequences. Mean SNR (p value = 0.01) and CNR (p value = 0.02) were significantly higher for DL sequences. Conclusions The accelerated PROPELLER sequences with DL post-processing showed superior image quality and higher diagnostic confidence compared to the conventional PROPELLER sequences. Subacromial bursa can be thoroughly assessed in DL sequences, while the other structures of the shoulder joint can be assessed in conventional and DL sequences with a good agreement between sequences. Key Points • MRI of the shoulder requires long scan times and can be hampered by motion artifacts. • Deep learning–based convolutional neural networks are used to reduce image noise and scan time while maintaining optimal image quality. The radial k-space acquisition technique (PROPELLER) can reduce the scan time and has potential to reduce motion artifacts. • DL sequences show a higher diagnostic confidence than conventional sequences and therefore are preferred for assessment of the subacromial bursa, while conventional and DL sequences show comparable performance in the evaluation of the shoulder joint.

Funder

University of Zurich

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3