Assessing deep learning reconstruction for faster prostate MRI: visual vs. diagnostic performance metrics

Author:

van Lohuizen QuintinORCID,Roest Christian,Simonis Frank F. J.,Fransen Stefan J.,Kwee Thomas C.,Yakar Derya,Huisman Henkjan

Abstract

Abstract Objective Deep learning (DL) MRI reconstruction enables fast scan acquisition with good visual quality, but the diagnostic impact is often not assessed because of large reader study requirements. This study used existing diagnostic DL to assess the diagnostic quality of reconstructed images. Materials and methods A retrospective multisite study of 1535 patients assessed biparametric prostate MRI between 2016 and 2020. Likely clinically significant prostate cancer (csPCa) lesions (PI-RADS $$\ge$$ 4) were delineated by expert radiologists. T2-weighted scans were retrospectively undersampled, simulating accelerated protocols. DL reconstruction (DLRecon) and diagnostic DL detection (DLDetect) were developed. The effect on the partial area under (pAUC), the Free-Response Operating Characteristic (FROC) curve, and the structural similarity (SSIM) were compared as metrics for diagnostic and visual quality, respectively. DLDetect was validated with a reader concordance analysis. Statistical analysis included Wilcoxon, permutation, and Cohen’s kappa tests for visual quality, diagnostic performance, and reader concordance. Results DLRecon improved visual quality at 4- and 8-fold (R4, R8) subsampling rates, with SSIM (range: −1 to 1) improved to 0.78 ± 0.02 (p < 0.001) and 0.67 ± 0.03 (p < 0.001) from 0.68 ± 0.03 and 0.51 ± 0.03, respectively. However, diagnostic performance at R4 showed a pAUC FROC of 1.33 (CI 1.28–1.39) for DL and 1.29 (CI 1.23–1.35) for naive reconstructions, both significantly lower than fully sampled pAUC of 1.58 (DL: p = 0.024, naïve: p = 0.02). Similar trends were noted for R8. Conclusion DL reconstruction produces visually appealing images but may reduce diagnostic accuracy. Incorporating diagnostic AI into the assessment framework offers a clinically relevant metric essential for adopting reconstruction models into clinical practice. Clinical relevance statement In clinical settings, caution is warranted when using DL reconstruction for MRI scans. While it recovered visual quality, it failed to match the prostate cancer detection rates observed in scans not subjected to acceleration and DL reconstruction.

Funder

Siemens Healthineers

Health~Holland

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3