Abstract
Abstract
Background
Recent studies have created awareness that facial features can be reconstructed from high-resolution MRI. Therefore, data sharing in neuroimaging requires special attention to protect participants’ privacy. Facial features removal (FFR) could alleviate these concerns. We assessed the impact of three FFR methods on subsequent automated image analysis to obtain clinically relevant outcome measurements in three clinical groups.
Methods
FFR was performed using QuickShear, FaceMasking, and Defacing. In 110 subjects of Alzheimer’s Disease Neuroimaging Initiative, normalized brain volumes (NBV) were measured by SIENAX. In 70 multiple sclerosis patients of the MAGNIMS Study Group, lesion volumes (WMLV) were measured by lesion prediction algorithm in lesion segmentation toolbox. In 84 glioblastoma patients of the PICTURE Study Group, tumor volumes (GBV) were measured by BraTumIA. Failed analyses on FFR-processed images were recorded. Only cases in which all image analyses completed successfully were analyzed. Differences between outcomes obtained from FFR-processed and full images were assessed, by quantifying the intra-class correlation coefficient (ICC) for absolute agreement and by testing for systematic differences using paired t tests.
Results
Automated analysis methods failed in 0–19% of cases in FFR-processed images versus 0–2% of cases in full images. ICC for absolute agreement ranged from 0.312 (GBV after FaceMasking) to 0.998 (WMLV after Defacing). FaceMasking yielded higher NBV (p = 0.003) and WMLV (p ≤ 0.001). GBV was lower after QuickShear and Defacing (both p < 0.001).
Conclusions
All three outcome measures were affected differently by FFR, including failure of analysis methods and both “random” variation and systematic differences. Further study is warranted to ensure high-quality neuroimaging research while protecting participants’ privacy.
Key Points
• Protecting participants’ privacy when sharing MRI data is important.
• Impact of three facial features removal methods on subsequent analysis was assessed in three clinical groups.
• Removing facial features degrades performance of image analysis methods.
Funder
Stichting MS Research
Medical Devices Initiative as part of NWO, NL
KWF Kankerbestrijding
NIHR Biomedical Research Centre
NIHR Biomedical Research Centre at UCLH
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献