Radiomics of pericardial fat: a new frontier in heart failure discrimination and prediction

Author:

Szabo LilianaORCID,Salih Ahmed,Pujadas Esmeralda Ruiz,Bard Andrew,McCracken Celeste,Ardissino Maddalena,Antoniades Charalambos,Vago Hajnalka,Maurovich-Horvat Pal,Merkely Bela,Neubauer Stefan,Lekadir Karim,Petersen Steffen E.,Raisi-Estabragh Zahra

Abstract

Abstract Objectives To use pericardial adipose tissue (PAT) radiomics phenotyping to differentiate existing and predict future heart failure (HF) cases in the UK Biobank. Methods PAT segmentations were derived from cardiovascular magnetic resonance (CMR) studies using an automated quality-controlled model to define the region-of-interest for radiomics analysis. Prevalent (present at time of imaging) and incident (first occurrence after imaging) HF were ascertained using health record linkage. We created balanced cohorts of non-HF individuals for comparison. PyRadiomics was utilised to extract 104 radiomics features, of which 28 were chosen after excluding highly correlated ones (0.8). These features, plus sex and age, served as predictors in binary classification models trained separately to detect (1) prevalent and (2) incident HF. We tested seven modeling methods using tenfold nested cross-validation and examined feature importance with explainability methods. Results We studied 1204 participants in total, 297 participants with prevalent (60 ± 7 years, 21% female) and 305 with incident (61 ± 6 years, 32% female) HF, and an equal number of non-HF comparators. We achieved good discriminative performance for both prevalent (voting classifier; AUC: 0.76; F1 score: 0.70) and incident (light gradient boosting machine: AUC: 0.74; F1 score: 0.68) HF. Our radiomics models showed marginally better performance compared to PAT area alone. Increased PAT size (maximum 2D diameter in a given column or slice) and texture heterogeneity (sum entropy) were important features for prevalent and incident HF classification models. Conclusions The amount and character of PAT discriminate individuals with prevalent HF and predict incidence of future HF. Clinical relevance statement This study presents an innovative application of pericardial adipose tissue (PAT) radiomics phenotyping as a predictive tool for heart failure (HF), a major public health concern. By leveraging advanced machine learning methods, the research uncovers that the quantity and characteristics of PAT can be used to identify existing cases of HF and predict future occurrences. The enhanced performance of these radiomics models over PAT area alone supports the potential for better personalised care through earlier detection and prevention of HF. Key Points •PAT radiomics applied to CMR was used for the first time to derive binary machine learning classifiers to develop models for discrimination of prevalence and prediction of incident heart failure. •Models using PAT area provided acceptable discrimination between cases of prevalent or incident heart failure and comparator groups. •An increased PAT volume (increased diameter using shape features) and greater texture heterogeneity captured by radiomics texture features (increased sum entropy) can be used as an additional classifier marker for heart failure.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3