CT-based thermometry with virtual monoenergetic images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning–based reconstruction

Author:

Heinrich AndreasORCID,Schenkl Sebastian,Buckreus David,Güttler Felix V.,Teichgräber Ulf K-M.

Abstract

Abstract Objectives The aim of this study was to evaluate the sensitivity of CT-based thermometry for clinical applications regarding a three-component tissue phantom of fat, muscle and bone. Virtual monoenergetic images (VMI) by dual-energy measurements and conventional polychromatic 120-kVp images with modern reconstruction algorithms adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning image reconstruction (DLIR) were compared. Methods A temperature-regulating water circuit system was developed for the systematic evaluation of the correlation between temperature and Hounsfield units (HU). The measurements were performed on a Revolution CT with gemstone spectral imaging technology (GSI). Complementary measurements were performed without GSI (voltage 120 kVp, current 130–545 mA). The measured object was a tissue equivalent phantom in a temperature range of 18 to 50°C. The evaluation was carried out for VMI at 40 to 140 keV and polychromatic 120-kVp images. Results The regression analysis showed a significant inverse linear dependency between temperature and average HU regardless of ASIR-V and DLIR. VMI show a higher temperature sensitivity compared to polychromatic images. The temperature sensitivities were 1.25 HU/°C (120 kVp) and 1.35 HU/°C (VMI at 140 keV) for fat, 0.38 HU/°C (120 kVp) and 0.47 HU/°C (VMI at 40 keV) for muscle and 1.15 HU/°C (120 kVp) and 3.58 HU/°C (VMI at 50 keV) for bone. Conclusions Dual-energy with VMI enables a higher temperature sensitivity for fat, muscle and bone. The reconstruction with ASIR-V and DLIR has no significant influence on CT-based thermometry, which opens up the potential of drastic dose reductions. Key Points Virtual monoenergetic images (VMI) enable a higher temperature sensitivity for fat (8%), muscle (24%) and bone (211%) compared to conventional polychromatic 120-kVp images. • With VMI, there are parameters, e.g. monoenergy and reconstruction kernel, to modulate the temperature sensitivity. In contrast, there are no parameters to influence the temperature sensitivity for conventional polychromatic 120-kVp images. The application of adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning–based image reconstruction (DLIR) has no effect on CT-based thermometry, opening up the potential of drastic dose reductions in clinical applications.

Funder

Universitätsklinikum Jena

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3