Robustness of pulmonary nodule radiomic features on computed tomography as a function of varying radiation dose levels—a multi-dose in vivo patient study

Author:

Bartholomeus Gijs A.,van Amsterdam Wouter A. C.,Harder Annemarie M.den,Willemink Martin J.,van Hamersvelt Robbert W.,de Jong Pim A.,Leiner Tim

Abstract

Abstract Objective Analysis of textural features of pulmonary nodules in chest CT, also known as radiomics, has several potential clinical applications, such as diagnosis, prognostication, and treatment response monitoring. For clinical use, it is essential that these features provide robust measurements. Studies with phantoms and simulated lower dose levels have demonstrated that radiomic features can vary with different radiation dose levels. This study presents an in vivo stability analysis of radiomic features for pulmonary nodules against varying radiation dose levels. Methods Nineteen patients with a total of thirty-five pulmonary nodules underwent four chest CT scans at different radiation dose levels (60, 33, 24, and 15 mAs) in a single session. The nodules were manually delineated. To assess the robustness of features, we calculated the intra-class correlation coefficient (ICC). To visualize the effect of milliampere-second variation on groups of features, a linear model was fitted to each feature. We calculated bias and calculated the R2 value as a measure of goodness of fit. Results A small minority of 15/100 (15%) radiomic features were considered stable (ICC > 0.9). Bias increased and Rdecreased at lower dose, but shape features seemed to be more robust to milliampere-second variations than other feature classes. Conclusion A large majority of pulmonary nodule radiomic features were not inherently robust to radiation dose level variations. For a subset of features, it was possible to correct this variability by a simple linear model. However, the correction became increasingly less accurate at lower radiation dose levels. Clinical relevance statement Radiomic features provide a quantitative description of a tumor based on medical imaging such as computed tomography (CT). These features are potentially useful in several clinical tasks such as diagnosis, prognosis prediction, treatment effect monitoring, and treatment effect estimation. Key Points • The vast majority of commonly used radiomic features are strongly influenced by variations in radiation dose level. • A small minority of radiomic features, notably the shape feature class, are robust against dose-level variations according to ICC calculations. • A large subset of radiomic features can be corrected by a linear model taking into account only the radiation dose level.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3