A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images
Author:
Funder
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
http://link.springer.com/article/10.1007/s00330-017-5154-8/fulltext.html
Reference35 articles.
1. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Current Oncology Reports 14:48–54
2. Kondziolka D, Martin JJ, Flickinger JC et al (2005) Long-term survivors after gamma knife radiosurgery for brain metastases. Cancer 104:2784–2791
3. Elaimy AL, Mackay AR, Lamoreaux WT et al (2011) Clinical outcomes of stereotactic radiosurgery in the treatment of patients with metastatic brain tumors. World Neurosurg 75:673–683
4. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiation Oncology 6:48
5. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90-05. International Journal of Radiation Oncology Biology Physics 47:291–298
Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dose-Incorporated Deep Ensemble Learning for Improving Brain Metastasis Stereotactic Radiosurgery Outcome Prediction;International Journal of Radiation Oncology*Biology*Physics;2024-10
2. Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E;Tomography;2024-09-09
3. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data;Scientific Reports;2024-05-15
4. Pretreatment Spatially Aware Magnetic Resonance Imaging Radiomics Can Predict Distant Brain Metastases (DBMs) After Stereotactic Radiosurgery/Radiation Therapy (SRS/SRT);Advances in Radiation Oncology;2024-05
5. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases;Journal of Neuro-Oncology;2024-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3