An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education

Author:

Huisman MerelORCID,Ranschaert Erik,Parker William,Mastrodicasa Domenico,Koci Martin,Pinto de Santos Daniel,Coppola Francesca,Morozov Sergey,Zins Marc,Bohyn Cedric,Koç Ural,Wu Jie,Veean Satyam,Fleischmann Dominik,Leiner Tim,Willemink Martin J.

Abstract

Abstract Objectives Currently, hurdles to implementation of artificial intelligence (AI) in radiology are a much-debated topic but have not been investigated in the community at large. Also, controversy exists if and to what extent AI should be incorporated into radiology residency programs. Methods Between April and July 2019, an international survey took place on AI regarding its impact on the profession and training. The survey was accessible for radiologists and residents and distributed through several radiological societies. Relationships of independent variables with opinions, hurdles, and education were assessed using multivariable logistic regression. Results The survey was completed by 1041 respondents from 54 countries. A majority (n = 855, 82%) expects that AI will cause a change to the radiology field within 10 years. Most frequently, expected roles of AI in clinical practice were second reader (n = 829, 78%) and work-flow optimization (n = 802, 77%). Ethical and legal issues (n = 630, 62%) and lack of knowledge (n = 584, 57%) were mentioned most often as hurdles to implementation. Expert respondents added lack of labelled images and generalizability issues. A majority (n = 819, 79%) indicated that AI should be incorporated in residency programs, while less support for imaging informatics and AI as a subspecialty was found (n = 241, 23%). Conclusions Broad community demand exists for incorporation of AI into residency programs. Based on the results of the current study, integration of AI education seems advisable for radiology residents, including issues related to data management, ethics, and legislation. Key Points • There is broad demand from the radiological community to incorporate AI into residency programs, but there is less support to recognize imaging informatics as a radiological subspecialty. • Ethical and legal issues and lack of knowledge are recognized as major bottlenecks for AI implementation by the radiological community, while the shortage in labeled data and IT-infrastructure issues are less often recognized as hurdles. • Integrating AI education in radiology curricula including technical aspects of data management, risk of bias, and ethical and legal issues may aid successful integration of AI into diagnostic radiology.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3