Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma—a systematic review and meta-analysis

Author:

Ursprung Stephan,Beer Lucian,Bruining Annemarie,Woitek Ramona,Stewart Grant D,Gallagher Ferdia A,Sala EvisORCID

Abstract

Abstract Objectives (1) To assess the methodological quality of radiomics studies investigating histological subtypes, therapy response, and survival in patients with renal cell carcinoma (RCC) and (2) to determine the risk of bias in these radiomics studies. Methods In this systematic review, literature published since 2000 on radiomics in RCC was included and assessed for methodological quality using the Radiomics Quality Score. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool and a meta-analysis of radiomics studies focusing on differentiating between angiomyolipoma without visible fat and RCC was performed. Results Fifty-seven studies investigating the use of radiomics in renal cancer were identified, including 4590 patients in total. The average Radiomics Quality Score was 3.41 (9.4% of total) with good inter-rater agreement (ICC 0.96, 95% CI 0.93–0.98). Three studies validated results with an independent dataset, one used a publically available validation dataset. None of the studies shared the code, images, or regions of interest. The meta-analysis showed moderate heterogeneity among the included studies and an odds ratio of 6.24 (95% CI 4.27–9.12; p < 0.001) for the differentiation of angiomyolipoma without visible fat from RCC. Conclusions Radiomics algorithms show promise for answering clinical questions where subjective interpretation is challenging or not established. However, the generalizability of findings to prospective cohorts needs to be demonstrated in future trials for progression towards clinical translation. Improved sharing of methods including code and images could facilitate independent validation of radiomics signatures. Key Points Studies achieved an average Radiomics Quality Score of 10.8%. Common reasons for low Radiomics Quality Scores were unvalidated results, retrospective study design, absence of open science, and insufficient control for multiple comparisons. A previous training phase allowed reaching almost perfect inter-rater agreement in the application of the Radiomics Quality Score. Meta-analysis of radiomics studies distinguishing angiomyolipoma without visible fat from renal cell carcinoma show moderate diagnostic odds ratios of 6.24 and moderate methodological diversity.

Funder

Cambridge Commonwealth, European and International Trust

Mark Foundation For Cancer Research

National Institute for Health Research

Medical Research Council

Cancer Research UK

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3