Automated Stanford classification of aortic dissection using a 2-step hierarchical neural network at computed tomography angiography
Author:
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00330-021-08370-2.pdf
Reference29 articles.
1. Bossone E, LaBounty TM, Eagle KA (2018) Acute aortic syndromes: diagnosis and management, an update. Eur Heart J 39:739–749d
2. Yu HY, Chen YS, Huang SC, Wang SS, Lin FY (2004) Late outcome of patients with aortic dissection: study of a national database. Eur J Cardiothorac Surg 25:683–690
3. Mészáros I, Mórocz J, Szlávi J et al (2000) Epidemiology and clinicopathology of aortic dissection. Chest 117:1271–1278
4. Clouse WD, Hallett JWJ, Schaff HV et al (2004) Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc 79:176–180
5. McMahon MA, Squirrell CA (2010) Multidetector CT of aortic dissection: a pictorial review. Radiographics 30:445–460
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unraveling phenotypic heterogeneity in stanford type B aortic dissection patients through machine learning clustering analysis of cardiovascular CT imaging;Hellenic Journal of Cardiology;2024-08
2. Streamlining Acute Abdominal Aortic Dissection Management—An AI-based CT Imaging Workflow;Journal of Imaging Informatics in Medicine;2024-06-12
3. Artificial Intelligence Provides Accurate Quantification of Thoracic Aortic Enlargement and Dissection in Chest CT;Diagnostics;2024-04-23
4. TEM Classification of Aortic Dissection—The Evolving Scoring System: A Literature Review;Heart, Lung and Circulation;2023-12
5. Machine learning and artificial intelligence in the prediction, diagnosis and treatment of thoracic aortic diseases (literature review). Part 2;Russian Journal for Personalized Medicine;2023-07-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3