Effects of a comprehensive brain computed tomography deep learning model on radiologist detection accuracy

Author:

Buchlak Quinlan D.ORCID,Tang Cyril H. M.,Seah Jarrel C. Y.,Johnson Andrew,Holt Xavier,Bottrell Georgina M.,Wardman Jeffrey B.,Samarasinghe Gihan,Dos Santos Pinheiro Leonardo,Xia Hongze,Ahmad Hassan K.,Pham Hung,Chiang Jason I.,Ektas Nalan,Milne Michael R.,Chiu Christopher H. Y.,Hachey Ben,Ryan Melissa K.,Johnston Benjamin P.,Esmaili Nazanin,Bennett Christine,Goldschlager Tony,Hall Jonathan,Vo Duc Tan,Oakden-Rayner Lauren,Leveque Jean-Christophe,Farrokhi Farrokh,Abramson Richard G.,Jones Catherine M.,Edelstein Simon,Brotchie Peter

Abstract

Abstract Objectives Non-contrast computed tomography of the brain (NCCTB) is commonly used to detect intracranial pathology but is subject to interpretation errors. Machine learning can augment clinical decision-making and improve NCCTB scan interpretation. This retrospective detection accuracy study assessed the performance of radiologists assisted by a deep learning model and compared the standalone performance of the model with that of unassisted radiologists. Methods A deep learning model was trained on 212,484 NCCTB scans drawn from a private radiology group in Australia. Scans from inpatient, outpatient, and emergency settings were included. Scan inclusion criteria were age ≥ 18 years and series slice thickness ≤ 1.5 mm. Thirty-two radiologists reviewed 2848 scans with and without the assistance of the deep learning system and rated their confidence in the presence of each finding using a 7-point scale. Differences in AUC and Matthews correlation coefficient (MCC) were calculated using a ground-truth gold standard. Results The model demonstrated an average area under the receiver operating characteristic curve (AUC) of 0.93 across 144 NCCTB findings and significantly improved radiologist interpretation performance. Assisted and unassisted radiologists demonstrated an average AUC of 0.79 and 0.73 across 22 grouped parent findings and 0.72 and 0.68 across 189 child findings, respectively. When assisted by the model, radiologist AUC was significantly improved for 91 findings (158 findings were non-inferior), and reading time was significantly reduced. Conclusions The assistance of a comprehensive deep learning model significantly improved radiologist detection accuracy across a wide range of clinical findings and demonstrated the potential to improve NCCTB interpretation. Clinical relevance statement This study evaluated a comprehensive CT brain deep learning model, which performed strongly, improved the performance of radiologists, and reduced interpretation time. The model may reduce errors, improve efficiency, facilitate triage, and better enable the delivery of timely patient care. Key Points • This study demonstrated that the use of a comprehensive deep learning system assisted radiologists in the detection of a wide range of abnormalities on non-contrast brain computed tomography scans. • The deep learning model demonstrated an average area under the receiver operating characteristic curve of 0.93 across 144 findings and significantly improved radiologist interpretation performance. • The assistance of the comprehensive deep learning model significantly reduced the time required for radiologists to interpret computed tomography scans of the brain.

Funder

annalise.ai

The University of Notre Dame Australia

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3