Performance of a deep convolutional neural network for MRI-based vertebral body measurements and insufficiency fracture detection

Author:

Germann ChristophORCID,Meyer André N.,Staib Matthias,Sutter Reto,Fritz Benjamin

Abstract

Abstract Objectives The aim is to validate the performance of a deep convolutional neural network (DCNN) for vertebral body measurements and insufficiency fracture detection on lumbar spine MRI. Methods This retrospective analysis included 1000 vertebral bodies in 200 patients (age 75.2 ± 9.8 years) who underwent lumbar spine MRI at multiple institutions. 160/200 patients had ≥ one vertebral body insufficiency fracture, 40/200 had no fracture. The performance of the DCNN and that of two fellowship-trained musculoskeletal radiologists in vertebral body measurements (anterior/posterior height, extent of endplate concavity, vertebral angle) and evaluation for insufficiency fractures were compared. Statistics included (a) interobserver reliability metrics using intraclass correlation coefficient (ICC), kappa statistics, and Bland-Altman analysis, and (b) diagnostic performance metrics (sensitivity, specificity, accuracy). A statistically significant difference was accepted if the 95% confidence intervals did not overlap. Results The inter-reader agreement between radiologists and the DCNN was excellent for vertebral body measurements, with ICC values of > 0.94 for anterior and posterior vertebral height and vertebral angle, and good to excellent for superior and inferior endplate concavity with ICC values of 0.79–0.85. The performance of the DCNN in fracture detection yielded a sensitivity of 0.941 (0.903–0.968), specificity of 0.969 (0.954–0.980), and accuracy of 0.962 (0.948–0.973). The diagnostic performance of the DCNN was independent of the radiological institution (accuracy 0.964 vs. 0.960), type of MRI scanner (accuracy 0.957 vs. 0.964), and magnetic field strength (accuracy 0.966 vs. 0.957). Conclusions A DCNN can achieve high diagnostic performance in vertebral body measurements and insufficiency fracture detection on heterogeneous lumbar spine MRI. Key Points • A DCNN has the potential for high diagnostic performance in measuring vertebral bodies and detecting insufficiency fractures of the lumbar spine.

Funder

University of Zurich

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3