Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey

Author:

Volpe Stefania,Mastroleo FedericoORCID,Krengli Marco,Jereczek-Fossa Barbara Alicja

Abstract

Abstract Objectives Radiomics is the high-throughput extraction of mineable and—possibly—reproducible quantitative imaging features from medical imaging. The aim of this work is to perform an unbiased bibliometric analysis on Radiomics 10 years after the first work became available, to highlight its status, pitfalls, and growing interest. Methods Scopus database was used to investigate all the available English manuscripts about Radiomics. R Bibliometrix package was used for data analysis: a cumulative analysis of document categories, authors affiliations, country scientific collaborations, institution collaboration networks, keyword analysis, comprehensive of co-occurrence network, thematic map analysis, and 2021 sub-analysis of trend topics was performed. Results A total of 5623 articles and 16,833 authors from 908 different sources have been identified. The first available document was published in March 2012, while the most recent included was released on the 31st of December 2021. China and USA were the most productive countries. Co-occurrence network analysis identified five words clusters based on top 50 authors’ keywords: Radiomics, computed tomography, radiogenomics, deep learning, tomography. Trend topics analysis for 2021 showed an increased interest in artificial intelligence (n = 286), nomogram (n = 166), hepatocellular carcinoma (n = 125), COVID-19 (n = 63), and X-ray computed (n = 60). Conclusions Our work demonstrates the importance of bibliometrics in aggregating information that otherwise would not be available in a granular analysis, detecting unknown patterns in Radiomics publications, while highlighting potential developments to ensure knowledge dissemination in the field and its future real-life applications in the clinical practice. Clinical relevance statement This work aims to shed light on the state of the art in radiomics, which offers numerous tangible and intangible benefits, and to encourage its integration in the contemporary clinical practice for more precise imaging analysis. Key Points ML-based bibliometric analysis is fundamental to detect unknown pattern of data in Radiomics publications. A raising interest in the field, the most relevant collaborations, keywords co-occurrence network, and trending topics have been investigated. Some pitfalls still exist, including the scarce standardization and the relative lack of homogeneity across studies.

Funder

Università degli Studi del Piemonte Orientale Amedeo Avogrado

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3