CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images

Author:

Lim Ruth P.ORCID,Kachel Stefan,Villa Adriana D. M.,Kearney Leighton,Bettencourt Nuno,Young Alistair A.,Chiribiri Amedeo,Scannell Cian M.

Abstract

Abstract Objectives To develop an image-based automatic deep learning method to classify cardiac MR images by sequence type and imaging plane for improved clinical post-processing efficiency. Methods Multivendor cardiac MRI studies were retrospectively collected from 4 centres and 3 vendors. A two-head convolutional neural network (‘CardiSort’) was trained to classify 35 sequences by imaging sequence (n = 17) and plane (n = 10). Single vendor training (SVT) on single-centre images (n = 234 patients) and multivendor training (MVT) with multicentre images (n = 434 patients, 3 centres) were performed. Model accuracy and F1 scores on a hold-out test set were calculated, with ground truth labels by an expert radiologist. External validation of MVT (MVTexternal) was performed on data from 3 previously unseen magnet systems from 2 vendors (n = 80 patients). Results Model sequence/plane/overall accuracy and F1-scores were 85.2%/93.2%/81.8% and 0.82 for SVT and 96.1%/97.9%/94.3% and 0.94 MVT on the hold-out test set. MVTexternal yielded sequence/plane/combined accuracy and F1-scores of 92.7%/93.0%/86.6% and 0.86. There was high accuracy for common sequences and conventional cardiac planes. Poor accuracy was observed for underrepresented classes and sequences where there was greater variability in acquisition parameters across centres, such as perfusion imaging. Conclusions A deep learning network was developed on multivendor data to classify MRI studies into component sequences and planes, with external validation. With refinement, it has potential to improve workflow by enabling automated sequence selection, an important first step in completely automated post-processing pipelines. Key Points • Deep learning can be applied for consistent and efficient classification of cardiac MR image types. • A multicentre, multivendor study using a deep learning algorithm (CardiSort) showed high classification accuracy on a hold-out test set with good generalisation to images from previously unseen magnet systems. • CardiSort has potential to improve clinical workflows, as a vital first step in developing fully automated post-processing pipelines.

Funder

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3