Evaluation of WRF-chem simulations of NO2 and CO from biomass burning over East Africa and its surrounding regions

Author:

Opio RonaldORCID,Mugume Isaac,Nakatumba-Nabende Joyce,Nanteza Jamiat,Nimusiima Alex,Mbogga Michael,Mugagga Frank

Abstract

AbstractIn East Africa, biomass burning in the savanna region emits nitrogen dioxide (NO2), carbon monoxide (CO), and aerosols among other species. These emissions are dangerous air pollutants which pose a health risk to the population. They also affect the radiation budget. Currently, limited academic research has been done to study their spatial and temporal distribution over this region by means of numerical modeling. This study therefore used the Weather Research and Forecasting model coupled with chemistry (WRF-chem) to simulate, for the first time, the distribution of NO2 during the year 2012 and CO during the period June 2015 to May 2016 over this region. These periods had the highest atmospheric abundances of these species. The model’s performance was evaluated against satellite observations from the Ozone Monitoring Instrument (OMI) and the Measurement of Pollution in the Troposphere (MOPITT). Three evaluation metrics were used, these were, the normalized mean bias (NMB), the root mean square error (RMSE) and Pearson’s correlation coefficient (R). Further, an attempt was made to reduce the bias shown by WRF-chem by applying a deep convolutional autoencoder (WRF-DCA) algorithm and linear scaling (WRF-LS). The results showed that WRF-chem simulated the seasonality of the gases but made below adequate estimates of the gas abundances. It overestimated NO2 and underestimated CO throughout all the seasons. Overall, for NO2, WRF-chem had an average NMB of 3.51, RMSE of 2 × 1015 molecules/cm2 and R of 0.44 while for CO, it had an average NMB of − 0.063, RMSE of 0.65 × 1018 molecules/cm2 and R of 0.13. Furthermore, even though both WRF-DCA and WRF-LS successfully reduced the bias in WRF-chem’s NO2 estimates, WRF-DCA had a superior performance compared to WRF-LS. It reduced the NMB by an average of 3.2 (90.2%). Finally, this study has shown that deep learning has a strong ability to improve the estimates of numerical models, and this can be a cue to incorporate this approach along other stages of the numerical modeling process.

Funder

International Development Research Centre

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3