Development of quantitative precipitation estimation (QPE) relations for dual-polarization radars based on raindrop size distribution measurements in Metro Manila, Philippines

Author:

Ibañez Marco Polo A.ORCID,Martirez Samuel C.,Pura Alvin G.,Sajulga Ramjun A.,Cayanan Esperanza O.,Jou Ben Jong-Dao,Chang Wei-Yu

Abstract

AbstractQuantitative precipitation estimates (QPE) can be further improved using estimation algorithms derived from localized raindrop size distribution (DSD) observations. In this study, DSD measurements from two disdrometer stations within Metro Manila during the Southwest monsoon (SWM) period were used to investigate the microphysical properties of rainfall and develop localized dual-polarimetric relations for different radar bands and rainfall types. Observations show that the DSD in Metro Manila is more distributed to larger diameters compared to Southern Luzon and neighboring countries and regions in the Western Pacific. This is reflected by the relatively higher mass-weighted mean diameter (Dm) and smaller shape (μ) and slope (Λ) parameters measured in the region. The average values of Dm and normalized intercept parameter (Nw) in convective rain samples also suggest that convective rains in Metro Manila are highly influenced by both continental and oceanic convective processes. Dual-polarimetric variables simulated using the T-matrix scattering method showed good agreement with disdrometer-derived reflectivity (ZH) values. The 0.5 dB and 0.3° km−1 thresholds for the differential reflectivity (ZDR) and specific differential phase (KDP) based on the blended algorithm of Cifelli (J Atmos Ocean Technol 28:352-364, 2011) and Thompson et al. (2017) are proven to be useful since the utility of the dual-polarimetric variables as rainfall estimators are shown to have dependencies on the radar band and rainfall type. Evaluation of the QPE products with respect to the C-band shows that R (KDP, ZDR) has the best performance among the dual-pol relations and statistically outperformed the conventional Marshall & Palmer relation [R(ZMP)]. The results show that dual-polarimetric variables such as ZDR and KDP can better represent the DSD properties compared to one-dimensional Z, hence providing more accurate QPE products than the conventional R(Z) relations.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3