Author:
Kramer Marie,Rautenbach Dieter
Abstract
AbstractFor a graph G, and two distinct vertices u and v of G, let $$n_{G}(u,v)$$
n
G
(
u
,
v
)
be the number of vertices of G that are closer in G to u than to v. Miklavič and Šparl (arXiv:2011.01635v1) define the distance-unbalancedness of G as the sum of $$|n_{G}(u,v)-n_{G}(v,u)|$$
|
n
G
(
u
,
v
)
-
n
G
(
v
,
u
)
|
over all unordered pairs of distinct vertices u and v of G. Confirming one of their conjectures, we show that the stars minimize the distance-unbalancedness among all trees of a fixed order.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Chemistry
Reference6 articles.
1. Z. Antal, P.L. Warburton, P.G. Mezey, Electron density shape analysis of a family of through-space and through-bond interactions. Phys. Chem. Chem. Phys. 16, 918–932 (2014)
2. T. Došlic, I. Martinjak, R. Škrekovski, S. Tipuric-Spuževic, I. Zubac, Mostar index. J. Math. Chem. 56, 2995–3013 (2018)
3. K. Handa, Bipartite graphs with balanced $$(a, b)$$-partitions. Ars Combinatoria 51, 113–119 (1999)
4. J. Jerebic, S. Klavžar, D.F. Rall, Distance-balanced graphs. Ann. Comb. 12, 71–79 (2008)
5. Š. Miklavič, P. Šparl, $$\ell $$-distance-balanced graphs. Discrete Appl. Math. 244, 143–154 (2018)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献